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Abstract. The determination of photoionisation cross-sections using the Kohn-Sham wave functions from
accurate density functional theory (DFT) calculations is considered. The continuum electrons wave function
is specified by its momentum measurable in the detector rather than fixed angular momentum and energy.
The method is applied to the test case of a water molecule, where the DFT calculations show excellent
agreement to experiment in the ionisation energies if a vertical transition is considered. The continuum
electron is described by an analytical wave function and the matrix elements are calculated in both in
length and velocity form of the dipole operator. The cross-sections agree well with the experiment in
particular for the velocity form.

PACS. 31.15.Ew Density-functional theory – 33.80.Eh Autoionization, photoionization, and photo-
detachment

1 Introduction

The process of photoionisation or photodetachment and
the subsequent measurement of the emitted electron is a
useful and direct tool to determine the electronic struc-
ture of a system under study. Measuring energy depen-
dent cross-sections and asymmetry parameters does not
only involve binding energies [1], but is sensitive to the
form of electronic wave functions [2]. Considering larger
atoms, molecules or clusters, it is impossible to calculate
the many electron wave function directly. Effective one-
particle methods like Hartree-Fock or Kohn-Sham density
functional theory (DFT) [3] can be used and are standard
tools to study the electronic structure of extended sys-
tems. It has been shown, that the photoionisation process
can be described on the basis of these calculations [4–7]
and that even relaxation effects of the whole electron cloud
can be described using the linear response of the so-called
time dependent DFT [8–10].

Starting from the description of atoms the current the-
ory is formulated in angular momentum expansions of the
wave functions involved. However, many ground state cal-
culations of extended systems are done on grids in mo-
mentum and/or configuration space leading to accurate
results for excitation energies [11]. The construction of
the continuum state (needed in the ionisation process)
has not been studied in these approaches. One can think
of representing the continuum state in a one center an-
gular momentum basis where sophisticated methods exist
to find the continuum solution of the Schrödinger equa-
tion [12–14]. However, the one centre expansion gets less
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adequate with increasing system size, involving many an-
gular momentum components which make this expansion
cumbersome. In addition, the mapping on the grid of the
initial state would perhaps produce uncontrollable errors
through the different methods of discretisation used.

In the current work, we propose a different approach
to the process than the usual view of continuum states of
fixed energy and angular momentum. We view the contin-
uum states in a more experimental way, i.e. the electron
in the final state has a definite momentum measurable at
the detector, rather than fixed energy and angular mo-
mentum. The specification of a defined direction involves
all angular momenta and the main purpose of this work is
to show how the determination of photoionisation cross-
sections can be done in this formalism.

The paper is organised as follows. In Section 2 the for-
mulation of the theory to describe photoinisation is given.
Section 3 shows the results of the calculation for the test
case of photoionisation of the water molecule. The conclu-
sions are given in Section 4.

2 Theory

We are considering the general photoionisation or pho-
todetachment process of some system with charge Z − 1
(−1 from the additional electron) absorbing a photon γ of
energy ω and emitting one electron. This electron can be
measured with momentum k in the detector, so that the
process is schematically

SZ−1 + γ(ω) → SZ + e−(k).
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The perturbation theory cross-section for this process is
given by [15]

dσ(ω)
dk

=
(2π)2

c

1
ω

|Tfi|2 δ(Ei + ω − Ef ), (1)

where c is the speed of light and Tfi denotes the transition
matrix element. The energy Ei is the energy of the initial
state and Ef is the energy of the system plus electron in
the final state. Atomic units are used throughout unless
otherwise specified. Note, that we have written the cross-
section (1) differential in k rather than in the electron
energy and emission angle. This is because we will later on
describe the continuum state of the electron for a definite
direction k to be measured in the detector.

Experimental photoionisation data is usually recorded
for unknown relation between the laboratory frame, in
which the vectors ε̂ (polarisation) and k are defined, and
the body fixed frame of the system in which the electronic
initial state wavefunctions are defined. To compare with
experimental data, we therefore have to average over all
relative orientations of these frames. Dipole symmetry im-
plies that the averaged cross-section σ̄ may be expressed
in the well-known form [2,16]

dσ̄(ω)

dEdk̂
= k

dσ̄(ω)
dk

=
1
4π

dσ̄(ω)
dE

(
1 + β(ω)P2(ε̂ · k̂)

)
(2)

where E = k2/2 denotes the electrons kinetic energy at
the detector. The parameter β is the asymmetry param-
eter and P2(x) = (3x2 − 1)/2 is the Legendre polynomial
of degree 2. Therefore the averaged cross-section just de-
pends on two parameters for fixed photon energy. This
is not valid if the systems orientation is fixed in the ex-
periment, where the only valid form of the cross-section
is given by equation (1). The two parameters are fixed if
the cross-section (2) is known at two relative angles be-
tween ε̂ and k̂. A useful choice is cos θ0 = ε̂ · k̂ = 1 and
the so-called “magic angle”, where cos θm = ε̂ · k̂ = 1/

√
3.

At the latter angle P2(cos θm) = 0 and the cross-section
is proportional to the angle integrated cross-section. We
therefore specify two situations where k and ε̂ are fixed
relative to each other and use the form (1) to evaluate the
averaged cross-sections there. If we denote the two cross-
sections by σ̄0, σ̄m (for θ0 and θm respectively) we are able
to reconstruct the parameters of (2) to be

dσ̄

dE
=
σ̄m

4π
, β =

σ̄0

σ̄m
− 1 (3)

where all parameters still depend on the photon energy.
To simplify the description we view the system in

a single particle picture, where the electrons occupy ef-
fective mean field states | i 〉. The states are eigenstates
of an effective single particle Hamiltonian ĥ with en-
ergy ei. In practice, the eigenstates are Kohn-Sham or-
bitals from a Born-Oppenheimer (BO) DFT calculation
(for the method, see Ref. [17]). Exchange and correlation
were treated within local-spin-density (LSD) approxima-
tion and generalised gradient corrections (GGA) [18] have

been self-consistently applied. The nuclei are relaxed to
the energy minimum of the BO surface.

There is no rigorous proof, that the Kohn-Sham or-
bitals have a meaning other than being a mathemat-
ical construct, but it is a well-known experience, that
the orbitals can be treated as existing in ionisation pro-
cesses [3,19,20]. However, the GGA orbital energies ei are
incorrect when compared to exact calculations, but this
can be cured approximately by shifting them by a con-
stant [21–23]. This constant can be determined by using
the condition, that the negative of the eigenenergy of the
highest occupied orbital (HOMO) equals the ionisation
potential. This equality is fulfilled in an exact Kohn-Sham
formalism [24]. We calculate the ionisation potential I as
the difference between the total energy of the system be-
fore ionisation E(SZ−1) and the total energy of the system
after ionisation E(SZ) at the same nuclear configuration.
Assuming that the nuclei do not move during the pho-
toionisation process, the configuration to use is the BO po-
tential minimum of the initial system SZ−1. The corrected
orbital energies εi are then given by

εi = ei − [e0 + I] (4)

where the HOMO has the index 0.
We describe the photoionisation process entirely in the

single particle picture. In this picture, the electron in the
initial state | i 〉 completely absorbs the photon’s energy
and is emitted to the continuum state | f 〉 directly. The
matrix element Tfi for absorbing a photon of polarisa-
tion ε̂ in dipole approximation is given in the so-called
velocity form by

T V
fi = 〈 i | ε̂ · ∇ | f 〉 (5)

and in the so-called length form by

TL
fi = (εi − εf ) 〈 i | ε̂ · r | f 〉 (6)

where r and ∇ denote the electron’s position and it’s
derivative respectively. The two forms are equivalent if | i 〉
and | f 〉 are eigenstates of the same Hamiltonian and non-
local effects are negligible [25]. Note, that we have to use
the corrected energy εi in (6) as it defines the relative en-
ergy difference to the free electron (εf ). In case we would
use ei instead of εi, we would get a wrong energy difference
to εf = k2/2, which is the true energy measurable in the
detector and not the unshifted energy of the continuum
state in the LSD-GGA potential.

The only part missing at this stage of our description
is the final state of an electron in the continuum of the
system SZ that can be measured with momentum k in
the detector. To our knowledge, this problem has not yet
been treated for arbitrary potentials. Therefore we apply
a simplified model where we assume that the charge Z is
concentrated in the centre of mass of the molecule. Then
we have a hydrogen like continuum, for which the contin-
uum state is well-known and given by [26,27]

〈 r |k 〉 = N(α)
eik·r

(2π)3/2 1F1(iα, 1,−i[k · r + kr]) (7)
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1b1 3a1 1b2 2a1

Fig. 1. Visualisation of the molecular orbitals as result of DFT calculations. 1b1 is the HOMO state. Dark and light spheres
denote O and H atoms, respectively. The 1b1 orbital is rotated out of the plane of the paper in order to show its “lone pair”
character (essentially an oxygen p-orbital perpendicular to the HOH plane).

where 1F1 denotes the confluent hyper-geometric func-
tion [28] and the parameter α = −Z/k represents the
strength of Coulomb force. The normalisation is given by

N(α) = e−πα/2 Γ (1 − iα) (8)

where Γ denotes the Gamma function [28]. The wave func-
tion is normalized to delta function in momentum space
and it represents simultaneously an incident wave and an
incoming scattered wave as indicated for a scattering fi-
nal state [29]. The wave function (7) is commonly used
in the description of atomic scattering processes and can
be generalised easily to describe continua of more than
one electron [30].

As was said above, the equality of velocity and length
form matrix elements is given only if the initial and final
states are eigenstates of the same Hamiltonian. This is not
the case anymore if we use numerical orbitals | i 〉 which
are eigenstates of the effective Kohn-Sham Hamiltonian,
but the wave function (7) is an eigenstate of a hydrogen
like Hamiltonian. Therefore we can expect differences be-
tween the cross-sections using the two forms of the dipole
operator and their amount gives a criterion on how accu-
rate our simple picture of the continuum is.

3 Results

We apply our description to the test case of water,
where extensive experimental data is available. The water
molecule has 10 electrons, where two of them are bound
in the 1s2 core of the oxygen atom and are not explic-
itly treated here. The other 8 electrons can be viewed as
occupying the deformed 2s and 2p orbitals of the oxy-
gen atom, creating molecular orbitals. These orbitals are
labeled due to their molecular symmetry in the order of
increasing binding energy as 1b1, 3a1, 1b2 and 2a1 [31].

The DFT ground state calculation was done on a uni-
form plane wave grid with grid spacing 0.22 a0 correspond-
ing to a plane wave cutoff of 204 Ry. The box contained
80 points in each direction [32]. The 2s2 and 2p4 valence
electrons of oxygen were treated with norm conserving
non-local pseudopotentials [33] with core radii of 1.45 a0.
The hydrogen s electron and the proton were treated
with a non-divergent local potential with a core radius

Table 1. Orbital uncorrected (ei) and corrected ener-
gies (εi) compared with experimental ionisation potentials
taken from [19]. All quantities are in eV.

orbital −ei −εi experiment

1b1 7.19 12.6 12.62

3a1 9.27 14.69 14.74

1b2 13.04 18.46 18.55

2a1 25.1 30.5 32.2

of 0.95 a0. Relaxation of the nuclei to their BO energy min-
imum leads to a HOH angle of 104.4◦, which is in excellent
agreement with the experimental value of 104.5◦ [34]. The
OH bond length of 0.972 Å is slightly too large compared
to the experimental value of 0.958 Å [34].

Figure 1 shows images of the Kohn-Sham orbitals in
our calculations. The wave functions correspond excel-
lently to the expected symmetries of the molecular or-
bitals [31]. The uncorrected and corrected orbital ener-
gies from our calculation are compared to experimental
values in Table 1. The corrected values (applying a shift
of 5.41 eV) agree very well with the experimental ionisa-
tion potentials, except for the 2a1 which differs by about
1.7 eV. Note, that the agreement is at the same level as
the agreement achieved by the use of exchange-correlation
potentials constructed by statistical averaging in refer-
ence [19], which also documented the difficulty of getting
correct energies for the 2a1 state. Here we note, that we
get the same ionisation potential for the HOMO state
(12.6 eV) also by using the transition state approxima-
tion [3] (that is solving for the eigenvalue of the half-
occupied HOMO).

The Kohn-Sham orbitals found can now be used to
calculate the photoionisation cross-sections and β param-
eters for each of the states. The averaging over all possible
orientations of the molecular frame is done by averaging
over all possible Euler angles φ, θ, ψ used to rotate the vec-
tors k and ε̂ to this frame. Here Gauss quadrature using
8 points in each angle is tested to be sufficient to reach
convergence.

Figure 2 shows the comparison of the state resolved
cross-sections to experimental data taken from refer-
ences [35,36]. One notes a good quantitative agreement
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Fig. 2. The state resolved cross-sections in velocity form (full line) and in length form (dotted line) compared to the experiment.
The data is taken from [35] (black boxes), Tan et al. as given in [35] (open triangles) and [36] (open circles).

between the velocity form calculations and the experiment
for the outer valence orbitals 1b1, 3a1 and 1b2, with a large
deviation for the inner valence orbital 2a1. The length
form cross-section however, agrees with experimental data
for the 1b1 state only.

The agreement for the 1b1 can be understood, if one
notes, that this is a lone pair orbital which essentially
represents an almost unperturbed p-orbital of the oxygen
atom as can be seen in Figure 1. Hence our atomic descrip-
tion of the final state is adequate in this case, as is con-
firmed by the simultaneous agreement between velocity
form, length form and experiment. The good agreement
between the velocity form cross-sections with experimen-
tal values of the other two valence orbitals 3a1 and 1b2 can
correspond to the favour of the velocity form for higher
transition energy [37].

The agreement with the experiment breaks down in
the description of the 2a1 cross-section, as was indicated
already by the difficulty in getting the correct ionisation
potential. However, one has to note, that the theoreti-
cal curves shown are purely ab initio and not corrected
to experimental ionisation potentials like in other calcula-
tions [10]. Any error in the ionisation potential enters both
in the purely geometrical density of continuum states as
well as in the connection of the different dipole transition
matrix elements (5) and (6). Therefore a shift of the ioni-

sation potential to the experimental value would improve
the agreement with experiment.

Figure 3 shows the experimental β parameters com-
pared to the calculations. Here the agreement between
theory and experiment is not as good as in the case of
the cross-sections: only the velocity form result for the
1b1 orbital is in quantitative agreement with the exper-
iment. The qualitative trend of the β parameter, which
rises as the energy increases, is described, but the value
is too large nearly everywhere. The reason for this devia-
tion can be attributed to the fact, that the β parameters
involve relative phases between the different channels to
the continuum and are therefore much more sensitive to
even small perturbations of the potentials involved [2].

Our β parameter calculations for the 2a1 state show
basically β = 2 as is expected for an s state when no
final state interaction is considered. The spherically sym-
metric potential considered in the construction of the fi-
nal state (7) is unable to change the angular momentum
of the continuum electron. The only source of deviations
from β = 2 in our description is the displacement of the
oxygen atom from the molecular centre of mass and the
mixing of higher angular momenta into the deformed ini-
tial s-state wave function. Both effects are seen to be small
and therefore we address the strong deviation from β = 2
seen in the experiment to be mainly a final state effect.
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Fig. 3. The state resolved beta parameters in velocity form (full line) and in length form (dotted line) compared to the
experiment. The data is taken from [35] (black boxes) and [36] (open circles).

4 Conclusions

We have discussed an approach to describe the pho-
toionisation cross-sections and β parameters which is an
alternative to the usual angular momentum expansion
description. The ionisation cross-section was formulated
differential in the direction of the electron momentum and
it is shown how this description can be used to deter-
mine photoionisation cross-sections and asymmetry pa-
rameters.

The description is applied to the test case of gas phase
water molecules, where the initial states are determined
by DFT LSD-GGA calculations. These calculations give
orbital ionisation energies in very good agreement with
the experiment if the binding energy of the HOMO is
forced to agree with the negative of the ionisation po-
tential. This procedure provides ionisation energies with
errors less than 0.1 eV for the outer valence orbitals.

The difficulty remains in constructing a final contin-
uum state appropriate to the Kohn-Sham potential and
describing an electron measurable with a defined momen-
tum in the detector. To circumvent this problem, the final
state was described by a hydrogen like continuum wave
function, where the wave function is known analytically.
This simple approach can describe the cross-sections of
the valence orbitals reasonably. However, the description

of the more sensitive asymmetry parameter is concordant
with experiment for the atom-like 1b1 orbital of water only.

The authors acknowledge funding from the Academy of
Finland (project 7103219). The BO DFT calculations where
performed at the CSC — the Finnish IT Center for Science in
Espoo.
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